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BUCKLING OF THIN CIRCULAR RINGS UNDER UNIFORM
PRESSURE

THEIN WAH

Southwest Research Institute, San Antonio, Texas

Abstract-The twist-buckling of thin rings is investigated. A simple formula for calculating the in-plane buckling
of the ring with extensional effects included, is also derived. The load required for twist-buckling is found to be
generally less than that for in-plane buckling.

NOTATION

A cross-sectional area of ring
a mean radius
E elastic tensile modulus
G shear modulus
I moment of inertia of ring section about axis normal to plane of ring
1 moment of inertia about radial axis
I p polar moment of inertia
J torsion constant
n integer
p radial (inward) pressure
t time
u displacement normal to plane of ring
v tangential displacement
w radial displacement
IX GJIEl
fJ IJAa2

8 rotation of ring
K Aa211
A. pa31EJ
Jl pa31EI
p mass density
r/J circumferential coordinate

INTRODUCTION

THE problem of the buckling ofa thin ring in its plane was solved nearly a century ago [I, 2].
The solution assumes the inextensibility ofthe centerline, an entirely reasonable assumption
which has stood the test of time. It is well known, however, that in many applications a
circular ring does not fail by buckling in its plane-unless some external constraint is
imposed to cause it to so buckle-but, rather, twists and buckles out of its plane. It is indeed
surprising that this very practical problem has not received the attention that it deserves.
Apparently, the only study of this subject is that by Goldberg and Bogdanoff [3] who,
however, confined attention to a ring of I section.

As a secondary result of our study we derive a simple equation for calculating the in
plane buckling of rings of arbitrary section with extensional effects included. While the
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effects of extensionality have been treated previously [4, 5J, no simple formula for exten
sional buckling, comparable to the classical one for inextensional buckling, apparently
exists in the literature.

It turns out that it is a tedious and difficult procedure to derive the differential equations
governing the torsional buckling ofa ring ofarbitrary section from first principles. We have
overcome this difficulty by first stating the equations of free vibration of circular rings for
all types of motion, which are available in the literature, and then using ad hoc arguments
for deducing therefrom the corresponding equations governing the buckling of a ring.

The equations for all types of vibration of a circular ring have been derived by Love [6J,
and the equations for in-plane vibrations also by Lamb [7]. Their equations differ in minor
respects because Lamb does not assume the inextensibility of the centerline and uses a
slightly different term for the in-plane curvature.

Our equations for in-plane vibrations differ slightly from those of Lamb, being sym
metrical, whereas those of Lamb are unsymmetrical. By using the expression for in-plane
curvature given by Love, while retaining the expression for the extension of theeenterline
as Lamb does, a symmetrical set of equations emerges.

DIFFERENTIAL EQUATIONS

We shall not elaborate upon the details of the derivation of the equations for the free
vibrations ofcircular rings because they can be deduced in a fairly straightforward manner
from Lamb's and Love's equations. The equations are:

(1)

(2)

(3)

(4)

where w is the radial displacement positive outward, v the tangential displacement, u the
displacement at right angles to the plane of ring and () the angular rotation of a cross
section. A is the cross-sectional area ofthe ring ofradius a, I and 1are the principal moments
of inertia ofthe cross section about axes at right angles to the plane of the ring and a radial
axis, respectively, Ip = 1+1 is the polar moment of inertia, J the torsion constant of the
cross section and p the mass density. E and G are the elastic tensile modulus and shear
modulus, respectively, and t is time. 4> is the circumferential coordinate.

As may be expected, the radial and tangential motions are coupled, being governed
by equations (1) and (2). Similarly, the out-of-plane and torsional motions are coupled and
governed by equations (3) and (4). These two types of motion can be investigated separately.
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TRANSITION TO BUCKLING EQUATIONS
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(5)

We consider ~ circular ring under a uniform inward radial pressure p per unit of cir
cumferential length. The compressive force in the ring is pa, where a is the radius. This
compressive force may cause buckling of the ring either in its plane or out of its plane.

In deducing the corresponding buckling equations from equations (1) to (4), we use a
device which has been suggested by Timoshenko in investigating the torsional buckling of
open section columns. His procedure is merely to replace the external load term by a
fictitious load whose intensity is the load causing buckling (here pa) times the appropriate
"curvature" term.

On this basis, we may deduce the buckling equations from the equations of vibration
by formally replacing the inertia terms as follows:

p --> pa/A

02W 1 d (dW )
ot2 --> a2 d¢ d¢ - v

02V 1 d / dV)
ot2 --> a2 d¢ \W + d¢

02 U 1 d / dU)
ot2 --> a2 d¢ \d¢

o2(a8) --> ~~ /da8)
ot2 a2 d¢ \ d¢

It may be noted that (l/aHdw/d¢ - v) is the in-plane slope, (l/aHw+ dv/d¢) is the circumfer
ential strain, (1/a)(du/d¢) is the slope at right angles to the plane ofthe ring and (l/a)d(a8)/d¢
is the rate of change of angle of twist. We thus obtain the following set ofequations govern
ing the buckling of a circular ring.*

(6)

(7)

(8)

(9)

Since equations (1) through (4) are valid for both full and partial rings which can bend in
their plane without twisting, so also are the equations (6) through (9). These equations
may therefore be used to investigate the buckling of circular arches.

* It is implied that the displacements are to be measured from the position of stable equilibrium defined by
Wo = - pa2

/ AE, v = u = II = O.
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IN-PLANE BUCKLING

Equations (6) and (7) containing both the displacement components wand v are cap
able of satisfying any suitable set of boundary conditions for both complete and incomplete
rings. They are therefore more general than the customary formulations in which the
condition of inext~nsibilityw+dv/d4> = 0 is assumed ab initio.

Let

w = W sin(n4> + 4>0)

v = V cos(n4> + 4>0)

where W, Vand 4>0 are constants.
Substitution in equations (6) and (7) results in the two equations

(n4+K-,un2)W-n(n2+K-,u)V= 0

-n(n2 +K-,u)W+n2(1+K-,u)V = 0

with

(10)

(11)

The condition for the vanishing of the determinant of the coefficients in equations (11)

gIves

n "# 0, 1. (12)

Equation (12) has two positive roots for /lny integer n ~ 2, the smaller of which gives
the buckling load. (n = 0,1 represent rigid body displacements of the ring.)

We note that K is a large quantity in a thin ring, and the sum of the roots, K+n2
, must

be nearly equal to K. The product of the roots is K(n2 -1) so that the larger root must be
very nearly equal to K. Thus, the smaller root is, very nearly,

so

n = 2,3 ... (13)

a familiar result. n = 2, of course, gives the buckling load. When ,u = n2 -1, it follows from
equations (11) that W = nV with K large. Thus, the centerline is essentially inextensible
for thin rings. Figure 1 gives the buckling load for various values of K as computed from
equation (12). It may be noted that ,u -+ 3, the classical value, as K -+ 00. Thus, the thinner
the ring, the closer the buckling load is to the classical value. That the inclusion of the
extension would decrease the buckling load could, of course, have been anticipated from
Rayleigh's principle, and it seems physically reasonable that extensional effects should be
more pronounced in thicker rings.
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rCLASSICAL VALUE IINEXTENSIONAL)
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FIG. 1. In-plane buckling of rings.

TWIST BUCKLING

(14)
u = U sin(mp +<Po)

a(} = e sin(n<p +<Po)

where U, e and <Po are constants and n is an integer. Introduction into equations (8) and (9)
gives

(n4 +lXn2-An2)U + n2(1X+ 1)0= 0

n2(1X+I)U+(I+lXn2-fUn2)0= 0

with

(15)

IX = GJ/El,

The determinantal equation takes the form

(n2+IX-A)(I+lXn2-/Un2)-n2(l+1X)2 = 0,

which may also be written

2 (2 IX 1) lX(n2
- 1)2

A - A n + lX+p+ {3n2 + {3n2 = 0 (16)

This quadratic gives two positive roots for all n ~ 2, the smallest of which is the root
sought. It may be shown that this root occurs for n = 2. Some solutions of equation (16)
for various type sections are given in Fig. 2.
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FIG. 2. Twist buckling of rings.

When n = 1, equation (16) gives only one root, viz:

(
1 ) (1 + ex)

A. = (1 + ex) 1+73 ~ -13-' since 13 ~ 1

(17)

n=2

This root is a large one and is inadmissible for calculating Per. It represents a rigid body
rotation of the ring about a diameter followed by a uniform twist, in opposite directions,
of the two halves.

As 13 becomes very small, it may be shown that for the usual values of ex, the smaller
root is given very nearly by

A. '" ex(n
2
-If /(exn

2 + 1)
er '" pn2 pn2 '

~ 9ex/(1 +4ex)



and so
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91X El
Per ~ 1+41X Q3
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(18)

E = 30 X 106 Ib/in2

G = 11·5 X 106 lb/in2

Equation (17) is shown by dashed lines in Fig. 2.
It may be noted from Fig. 2 that the load required for twist-buckling is smaller than that

for in-plane buckling for all sections shown except the "wide" section which has a large
value of 1. It would seem therefore that twist-buckling rather than in-plane buckling will
be the controlling criterion for most sections unless special conditions exist to prevent the
ring from twisting out of its plane.

As noted in the Introduction, Goldberg and Bogdanoff [3] deduced an equation for the
out-of-plane buckling of circular rings of I section. They assumed in their derivation that
the plane ofaction of the radial load, which was supposed acting at the inner flange, moved
parallel to itself as the section rotated. In our solution, equation (16), the line ofaction of the
pressure P remains unchanged as the section rotates. If one omits the term RbJn2 in their
equation (40), the conditions assumed in the two solutions become identical.

If the solution of Ref. [3] is changed as noted above, the resulting equation is still con
siderably more complex than equation (16) of this paper because of the presence in the
former of many small terms. It is nevertheless instructive to compare the results obtained
by using the two solutions.

We take for illustration the numerical example given by Goldberg and Bogdanoff.
The relevant quantities are

A = 19-4 in2 a = 727·7 in.

I p = 886·15 in4

1 = 106·28 in4

J = 2·352 in4

The modified equation of Ref. [3] then yields the buckling load

Ncr = (pa)cr = 453'9Ib, n = 2

Equation (16) of this paper yields

Ncr = (pa)cr = 444 lb,

and the approximate relation, equation (18), yields

Ncr = 444·6Ib

n=2

The results are clearly very close. It is worthy of note that when equation (40) of Ref. [3]
is modified as indicated above it yields positive roots only, so that buckling with a tensile
hoop tension which was found with a translating load vector is no longer possible. Further
more, the assumption that the load vector does not translate always gives the smaller
critical load.
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Resume--Le flechissement par torsion d'anneaux minces est examine. Une formule simple pour Ie calcul du
flechissement dans Ie plan de l'anneau Ycompris des effets d'allongement, est aussi derivee. La charge necessaire
pour Ie flechissement par torsion apparait etre generalement inferieure acelie pour Ie flechissement dans Ie plan.

ZusammenfassUDg-Das Drillknicken diinner Ringe wird untersucht, Eine einfache Formel wird abgeleitet die das
Errechnen des Knickens in der Ebene, mit Streckungswirkungen, ermoglichen. Die Last die notwendig ist urn
Drillknicken zu bewirken ist im aUgemeinen geringer als fUr die ebene Kinckung.

A6cTpaKT;-HccneA}'eTCJI BblUYlfHBaHHe C KpYlfeHHKM TOHKHX Koneu;. BblBeiIeHa TaKlKe cPoPMYJIa)1J1Jl paclfeTa

BbIIJY'IHBaIfHJI KOJIbu;a B nJIOCKOCTH, npH HaJIH'iHH iI06aBolfHb!X 3CPcPeKTOB. Hait,neHHaJI HarpY3Ka AJIJI

Bbmy'iHBaHHJI C KpylfeHHeM JlBJIJleTCJI B06weM MeHee lfeM)1J1JI BbIII)"lHBaHHJI B nJIOCKOCTH.


